MA 238 APPLIED DIFFERENTIAL EQUATIONS I

Course Description.	An introduction to numerical methods, qualitative behavior of
	first-order differential equations, techniques for solving separable
	and linear equations analytically, and applications to various
	models (e.g., population, motion, chemical mixtures, etc.);
	techniques for solving higher-order linear differential equations
	with constant coefficients (general theory, undetermined
	coefficients, reduction of order, and the method of variation of
	parameters), with emphasis on interpreting the behavior of the
	solutions, and applications to physical models whose governing
	equations are of higher order; the Laplace transform as a tool for
	the solution of initial-value problems whose inhomogeneous terms
	are discontinuous.
Credit Hours:	3
Course Objectives:	The course is intended to strengthen the uwdepv/u understanding of
	calculus by using it to solve differential equations. It also
	provides the student with a knowledge of how differential
	equations can be used to model and solve applied problems,
	especially in science.
Course Content:	Terminology, methods of solving first-order differential equations,
	differential equations of higher order, modeling with differential
	equations, the Laplace transform.
Course Requirements: Regular class attendance is expected. Students are required	
	to apply techniques learned in calculus to the solution of
	differential equations. They are expected to derive and solve
	differential equations which serve to model a physical process
	where changes occur as time progresses.
Calculator Policy:	Preaue tefet vq {qwt kpuvtwcvqtøu cqwtue u{mabwu vq fkpd yj ekt
	course-specific calculator policy.

Course Evaluation: There will be at least 3 major tests and a final exam.

ACCOMMODATION STATEMENT:

In accordance with the Americans with Disabilities Act (ADA) and Section 504 of the Rehabilitation Act of 1973, the University offers reasonable accommodations to students with eligible documented learning, physical and/or psychological disabilities. Under Title II of the Americans with Disabilities Act (ADA) of 1990 and Section 504 of the Rehabilitation Act of 1973, a disability is defined as a physical or mental impairment that substantially limits one or more major life activities as compared to an average person in the population. It is the responsibility of the student to contact *Developmental Services* prior to the beginning of the semester to initiate the accommodation process and to notify instructors within the first three class meetings to develop an accommodation plan. Appropriate, reasonable accommodations will be made to allow each student to meet course req7 Tm0 g0 G0.012 [Te[Th]]TEQ0.000009120 62792 t cou 62792 t We87(to note the test of t